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Particle sizes of infectious aerosols: implications for 
infection control
Kevin P Fennelly

The global pandemic of COVID-19 has been associated with infections and deaths among health-care workers. This 
Viewpoint of infectious aerosols is intended to inform appropriate infection control measures to protect health-care 
workers. Studies of cough aerosols and of exhaled breath from patients with various respiratory infections have 
shown striking similarities in aerosol size distributions, with a predominance of pathogens in small particles (<5 µm). 
These are immediately respirable, suggesting the need for personal respiratory protection (respirators) for individuals 
in close proximity to patients with potentially virulent pathogens. There is no evidence that some pathogens are 
carried only in large droplets. Surgical masks might offer some respiratory protection from inhalation of infectious 
aerosols, but not as much as respirators. However, surgical masks worn by patients reduce exposures to infectious 
aerosols to health-care workers and other individuals. The variability of infectious aerosol production, with some so-
called super-emitters producing much higher amounts of infectious aerosol than most, might help to explain the 
epidemiology of super-spreading. Airborne infection control measures are indicated for potentially lethal respiratory 
pathogens such as severe acute respiratory syndrome coronavirus 2.

Introduction
The global pandemic of COVID-19, caused by severe 
acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) 
has been associated with infections and deaths among 
health-care workers.1 There have been conflicting 
recommendations from health authorities on the use of 
masks or respirators to protect health-care workers.2–4 
When I first reviewed personal respiratory protection 
against tuberculosis for health-care workers more than 
20 years ago,5 there was very little infor mation on 
infectious aerosols. Since then, colleagues in various 
disciplines have provided a wealth of data. The purpose 
of this Viewpoint is to review the scientific literature on 
the aerosols generated by individuals with respiratory 
infections, and to discuss how these data inform the 
optimal use of masks, respirators, and other infection-
control measures to protect health-care workers from 
those aerosols. This is not a review of the literature on 
the use of surgical masks or respirators, as several have 
been done already.6–11

Traditional view of infectious aerosols
Current infection control policies are based on the 
premise that most respiratory infections are transmitted 
by large respiratory droplets—ie, larger than 5 µm—
produced by coughing and sneezing, then deposited 
onto exposed fomite or mucosal surfaces.12 Proximity 
has often been considered a proxy for respiratory 
droplets,13,14 reflected by statements such as “Proximity 
to the index case was associated with transmission 
which is consistent with droplet spread.”15 Airborne 
transmission has often been attributed to infectious 
droplet nuclei produced by the desiccation of suspen-
ded droplets, and defined as 5 µm or smaller in size. 
This has been thought to occur only for tuberculosis 
and a few other pathogens. Thus, surgical masks have 
been recommended for use against most respiratory 
infections.

Particles and plumes
Infectious aerosols are suspensions of pathogens in 
particles in the air, subject to both physical and biological 
laws. Particle size is the most important determinant of 
aerosol behaviour. Particles that are 5 µm or smaller in 
size can remain airborne indefinitely under most indoor 
conditions16 unless there is removal due to air currents or 
dilution ventilation. This same size range of particles (ie, 
<5 µm) deposits in the lower respiratory tract in 
humans12,17 as well as in guinea pigs, mice, and monkeys.18 
Particles sized 6–12 µm deposit in the upper airways of 
the head and neck.18

Sophisticated imaging studies have shown that 
plumes of aerosols are generated by sneezing or 
coughing (appendix p 1).19,20 The aerosol plume contains 
the highest concentration of particles, which then 
dissipate in the air over time and distance. That distance 
is now much farther than previously appreciated, 
travelling up to 7–8 m.19 A re-analysis21 of the size of 
particles emitted by an average person that would fall to 
the ground within 2 m is 60–100 µm, and these can be 
carried more than 6 m away by sneezing. Obviously, 
health-care workers doing procedures close to a patient’s 
mouth, such as intubations, bronchoscopies, or dental 
work can easily be exposed to such aerosol plumes. 
There is a wide range of particle sizes within the 
plumes.22 However, the most important questions are 
whether pathogens are in those plumes and whether 
their size is consistent with transmission. Studies of 
cough aerosols and exhaled breath offer answers to 
those questions.

Cough aerosol studies
Pathogens have been isolated in the aerosols generated 
by coughing from patients with various respiratory 
infections. Studies of those that included methods to 
measure particle sizes have consistently found pathogens 
in small particles (ie, <5 µm; table 1). Other studies 
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without particle size data focused on other outcomes,16,33,34 
or used methods that could not provide sizing data.35–40

Tuberculosis
When culturable cough aerosols produced by patients 
with tuberculosis were directly measured, most (96%) of 
the culturable Mycobacterium tuberculosis were in part-
icles smaller than 4·7 µm (figure 1).24 There were few 
M tuberculosis in large particles (ie, >7·0 µm) and on 
settle plates (11% with any colony-forming units [CFU]).24 
Culturable cough aerosols from index cases of tubercu-
losis were found to be the best predictor of new infections 
of tuberculosis in their household contacts.34 A consistent 
finding in tuberculosis aerosol studies is the variability 
of infectious aerosol production from patients with 
pulmonary tuberculosis.33 These data suggest that a few 
patients with tuberculosis are infectious via cough 
aerosols, and some are very infectious,41 coherent with the 
epidemiological observation of super-spreading.42,43

M tuberculosis has also been detected in a 1·4 m³ 
chamber, using both molecular and culture-based 
methods.25 Most (59%) of the particles were smaller than 
3·3 µm. In the largest study26 of cough aerosols in 
tuberculosis, almost half of the patients with drug-

resistant-tuberculosis generated cough aerosols, and the 
highest counts of viable bacilli were in the 2·1–4·7 µm 
size range, consistent with previous studies.24,25

Cystic fibrosis
Pseudomonas aeruginosa has been collected from cough 
aerosols in patients with cystic fibrosis.27 These patients 
generated a particle size distribution that was only 
slightly larger than that noted in patients with 
tuberculosis (figure 1). There were relatively few large 
particles containing bacteria on the settle plates (median 
6 CFU) or in a wash of the connecting tubing (1120 CFU, 
95% CI 200–6060).27 In a follow-up study, the investigators 
found that viable P aeruginosa from cough aerosols could 
travel 4 m and remain culturable for up to 45 min.28

Influenza and other viruses
To study the effect of distance, cough aerosols were 
collected at distances of 1 ft, 3 ft, and 6 ft from 61 patients 
with influenza (influenza A or influenza B).31 Particles 
smaller than 4·7 µm were collected at all three sampling 
sites. At 6 ft (1·83 m), hardly any large particles (ie, ≥4·7 µm) 
were detected. The magnitude of the influenza aerosol 
output was log-normally distributed, again coherent with 

Key messages

• Infectious aerosols are particles with potentially pathogenic 
viruses, bacteria, and fungi suspended in the air, which are 
subject to the same physical laws as other airborne particulate 
matter. The biology of the pathogens predicts their airborne 
survival, infectivity, virulence, and other characteristics.

• Particle size is the most important determinant of aerosol 
behaviour.

• Small aerosol particles smaller than 5 µm in aerodynamic size 
are most likely to remain airborne for indefinite periods (unless 
there is removal due to air currents or dilution ventilation), and 
to be deposited in the lower respiratory tract. 

• Infection control guidelines have stated that most respiratory 
infections are transmitted by respiratory droplets—ie, 
particles larger than 5–10 µm in size. Airborne transmission 
has been attributed to only a few pathogens, notably 
Mycobacterium tuberculosis, via infectious droplet nuclei that 
are particles sized 5 µm or smaller. The use of airborne 
infection isolation rooms and respirator masks has been 
recommended only to protect against airborne transmission.

• These recommendations have been based on old data and 
inferences. Over the past two decades, investigators have 
collected and directly measured the particle sizes of 
infectious aerosols emitted from individuals with respiratory 
infections from aerosols generated by cough and from 
exhaled breath.

• The studies reviewed in this paper consistently show that 
humans produce infectious aerosols in a wide range of particle 
sizes, but pathogens predominate in small particles (<5 µm 
that are immediately respirable by exposed individuals.

• Data are accumulating that severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2), the virus that causes 
COVID-19, is transmitted by both small and large particle 
aerosols. 

• These data suggest that health-care workers should be 
protected from these potentially infectious aerosols when 
working in close proximity to patients.

• Some surgical masks might offer respiratory protection 
compared with not wearing a mask. Filtering facepiece 
respirators offer more respiratory protection than surgical 
masks, and powered air purifying respirator (PAPRs) hoods 
offer the best protection for most health-care settings.

• Face shields can help decrease exposures to and 
contamination from large particle aerosols, but they do not 
offer inhalation protection against small particle aerosols. 

• PAPRs have built-in eye protection. Surgical masks and other 
respirators require a face shield or goggles to protect the eyes 
to prevent infection.

• Masking of patients can help to partly reduce infectious 
aerosol exposures to health-care workers, but are not a 
substitute for physical distancing and other infection control 
measures.

• Aerosolisation of respiratory pathogens is highly variable, 
at least partly due to the log-normal distribution of 
infectious aerosols, consistent with so-called super-
spreading.

• Airborne infection isolation rooms and other infection 
control measures against airborne infection are indicated for 
virulent respiratory pathogens such as SARS-CoV-2.
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super-spreading (figure 2). In a separate study using a 
different bioaerosol sampler,29 viral RNA was detected in 
cough aerosols in 38 (81%) of 47 patients with influenza. 
35% of the viral RNA was in particles larger than 4 µm, 
and 65% was in particles sized 4 µm or smaller (figure 2).

In children and adults with upper respiratory 
infections, PCR assays have detected various viruses.32 
During coughing, 82% of participants produced small 
particles (<4·7 µm) containing virus, versus 57% who 
produced larger particles.

Exhaled breath aerosol studies
In studies of exhaled breath aerosols with particle size 
measurements, pathogens were consistently found in 
small particles (<5 µm; table 2). Other studies assayed 
exhaled breath condensates or filters,38,48 or used other 
methods that cannot provide particle size distributions 
such as  direct impaction onto a Petri dish40 or into liquid 
media.36 However, most particles in exhaled breath are 
smaller than 4 µm, with a median between 0·7 and 
1·0 µm.49

Several virus types have been detected in exhaled breath 
condensates using PCR, such as influenza,50–52 human 
rhinovirus,50,52 respiratory syncytial virus,50,52 cytomegalo-
virus,53,54 Epstein-Barr virus,53 human papil loma virus,55 
and Torque teno virus.56 Bacteria have also been detected 
by PCR in exhaled breath condensates, especially 

Haemophilus influenzae, and also P aeruginosa, Escherichia 
coli, Stenotrophomonas maltophilia, meticillin-sensitive 
Staphylococcus aureus, and meticillin-resistant S aureus.57 
Viral and bacterial pathogens were isolated from exhaled 
breath condensates in the same patients, including 
influenza A, respiratory syncytial virus, S aureus, 
H influenzae, Legionella pneumophila, and Mycoplasma 
pneumoniae.58 Cladosporium, Alternaria, and Penicillium 
species have been detected in the exhaled breath 
condensates of patients with asthma.59 In a study of 
exposures to patients with Pneumocystis jirovecii colonies, 
the exhaled breath was positive by PCR in two (50%) of 
four critically ill patients and in two (22%) of nine exposed 
health-care workers with colonies.60

Once direct measurement of particles containing viruses 
in exhaled breath was technically feasible, most particles 
(87%) with influenza viral RNA were found to be smaller 
than 1 µm.44 Exhaled influenza viral generation rates were 
estimated to be from fewer than 3·2 to 20 virus particles 
per min. Further developments enabled detection of so-
called fine versus coarse particles (ie, ≤5 µm vs >5 µm).45 
Influenza viral RNA was detected in the exhaled breath of 
34 (92%) of 37 adults.45 The fine particles contained 
8·8-times (95% CI 4·1–19·0) more viral copies than did 
the coarse ones. Respiratory viruses have been found in 
both coughs (82% of participants) and exhaled breath 
(81% of participants).32 Similarly, influenza virus was 

Pathogen, n/N (%) patients Containment method 
and sampling time

Aerosol sampling method Small particle size 
range (µm; % of 
total aerosol)

Median CFU 
(range)

Comment

Denver, CO, USA (Fennelly 
et al, 2004)23

Mycobacterium tuberculosis, 
4/16 (25%)

Plexiglass box, 2 × 5 min Two Andersen cascade 
impactors

Most <4·7 NR (3–633) Development study: 
all MDR-TB; no HIV

Kampala, Uganda 
(Fennelly et al, 2012)24

M tuberculosis, 28/101 (28%) Stainless steel cylinder: 
30 L, 2 × 5 min

Two Andersen cascade 
impactors

<4·7 (96%) 16 (1–710) Feasibility study:
8 (8%) MDR-TB;
49/84 (58%) HIV-positive

Cape Town, South Africa 
(Patterson et al, 2018)25

M tuberculosis, 15/35 (43%) by 
culture; 25/27 (93% by PCR)

Custom chamber
1400 L

Andersen cascade impactor 
and polycarbonate filter

<4·7 (59%) 2·5 (1–14) ··

Cape Town, South Africa 
(Theron et al, 2020)26

M tuberculosis, 142/452 (31%) 10 L polypropylene 
chamber; 5 min

One Andersen cascade 
impactor

<4·7 (60%) 2–4 (1–310) ··

Brisbane, QLD, Australia 
(Wainwright et al, 2009)27

Pseudomonas aeruginosa, 
25/28 (89%)

Stainless steel cylinder: 
30 L, 2 × 5 min

Andersen cascade impactor <4·7 (72%) NR (0–13 485) ··

Brisbane, QLD, Australia 
(Knibbs et al, 2014)28

P aeruginosa, 17/18 (94%) at 
4 m

Stainless steel distance 
rig 

One Andersen cascade 
impactor

<4·7 (58%) at 4 m Mean 14·3 (95% CI 
10·9–18·7) for 
small fraction

··

Morgantown, WV, USA 
(Lindsley et al, 2010)29

Influenza A, 32/38 (84%) Mechanical spirometer 
(10 L)

NIOSH sampler <4 (65%) ·· ··

Morgantown, WV, USA 
(Lindsley et al, 2012)30

Influenza, N=9 Mechanical spirometer 
with HEPA filtered air

Laser particle spectrometer Average count 
median diameter 
0·63 (SD 0·05)

Average particles 
per cough 75 400 
(SD 97 300)

No viable sampling

Winston-Salem, NC, USA 
(Bischoff et al, 2013)31

Influenza A and B, 26/61 (43%) Inpatient rooms and 
emergency department

Andersen cascade impactor <4·7 (more than 75% 
at 1 ft); almost 100% 
at 6 ft

5 (19%) emitted 32 times 
more than others

Sydney, NSW, Australia 
(Gralton et al, 2013)32

23/28 (80%) mixed viruses Custom unit Andersen cascade impactor <4·7 Not measured HRV, RSV, influenza A, and 
parainfluenza

CFU=colony-forming units. NR=not recorded. MDR-TB=multidrug-resistant tuberculosis. HEPA=high-efficiency particulate air. NIOSH=US National Institute of Occupational Safety and Health. HEPA=high 
efficiency particulate air. HRV=human rhinovirus. RSV=respiratory syncytial virus.

Table 1: Summary of studies of infectious aerosols collected from coughs with particle size data
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found in similar amounts in coughs (53% of participants) 
and breath (42% of participants).36 Human rhinovirus was 
collected more frequently in exhaled breath than in cough 
aerosols using a filter method.38 Findings from two studies 
with comparable particle size data showed that influenza 
virus in exhaled breath is contained in smaller particles 
than influenza virus in cough (figure 3).29,44

Three studies did not detect M tuberculosis in exhaled 
breath condensates.61–63 In a study of 16 patients with 
tuberculosis requiring mechanical ventilation, PCR assays 
of filters in the expired air were positive in 12 (75%).64 
However, two studies65,66 using face-mask sampling from 
patients with tuberculosis have detected M tuberculosis in 
exhaled breath. In the first,65 a N95 respirator with a 
sampling membrane was worn for 5 min. Patients with 
tuberculosis were instructed to cough, talk, and breathe 
normally. M tuberculosis-specific RNA, suggesting viability, 
was detected in all 15 participants. In a more detailed 24-h 
study of 78 patients with tuberculosis, M tuberculosis was 
detected more frequently in face-mask samples (86%) than 
in sputum (21%).66

The most probable mechanism to explain the presence 
of pathogens in exhaled breath is that the opening of 
collapsed bronchioles generates aerosols, but there are 
other theories such as vocal cord closure and vibration.49,67 
These mechanisms might explain transmission from 
asymptomatic individuals.68 However, there are no data 
supporting transmission from infectious aerosols in 
exhaled breath, as most of these studies were focused on 
diagnostics.

Room air and personal sampling studies
Infectious aerosols have also been collected from room 
air, suggesting the potential for exposures to health-care 
workers. Varicella-zoster virus, known to be one of the 
most contagious viruses, was detected by PCR in the 
room air of 64 (82%) of 78 patients with varicella and in 
the room air of nine (70%) of 13 patients with herpes 
zoster, suggesting airborne transmission.69 Measles is 
another very infectious virus. Aerosol sampling was done 
in the room of a young woman with measles at the head 
of her bed, and at 0·61 m and 0·91 m away from her head 
(0·91 m=foot of the bed). PCR assays were positive for 
measles RNA in the particles smaller than 4·7 µm 
collected at all locations; however, particles larger than 
4·7 µm were only positive for virus at the head of the bed. 
None of the samples were positive by tissue culture.70

M tuberculosis has been detected in hospital air by PCR 
from settle plates71 and filters.64,72,73 In an outpatient 
clinic in South Africa, M tuberculosis was detected by PCR 
more frequently from personal air samplers worn by 
health-care workers (in nine [36%] of 25) than by 
stationary samplers (in two [8·3%] of 24).74 Influenza 
virus has been detected using PCR in personal samplers 
worn by health-care workers and in ambient air samples 
from an emergency department: 50% of the airborne 
virus particles were 4 µm or smaller.75 Influenza A was 

also detected by PCR in 19% of personal samplers and 
17% of stationary samplers in an urgent care clinic.76 In 
the same clinic, respiratory syncytial virus RNA was 
detected in 38% of the personal samplers and 32% of the 
stationary samplers; 42% of the particles containing 
influenza and 9% of the particles containing respiratory 
syncytial virus were smaller than 4·1 µm. In a smaller 
study,77 influenza A viral RNA was detected in five (50%) 
of ten sample collections. Most (four of five) were from 
particles larger than 4 µm, and one was from particles 
sized 1–4 µm. In another study,78 six (37·5%) of 16 air 
samples near patients with influenza were positive by 
PCR in all particle size ranges tested—ie, smaller than 
1 µm, 1–4 µm, and larger than 4 µm.

In a large study79 in a busy inner-city emergency 
department, influenza was detected in 53 (42%) of 
125 personal samplers worn by 30 health-care workers, in 
28 (43%) of 96 room air samples, in 23 (76%) of 30 surface 
samples, and on three (25%) of 12 respirators worn while 
exposed to a patient with confirmed influenza. In a separate 
study at a large hospital in China,80 influenza was detected 
in 15 (79%) of 19 air samples in all particle size ranges 
(<1 µm, 1–4 µm, and >4 µm). Total influenza virus ranged 
from 3715 to 119 371 copies per m³. Similar to the study in 
which influenza virus and respiratory syncytial virus were 
both detected by PCR,76 viable respiratory syncytial virus 

Figure 1: Particle size distributions of cough aerosols from (A) patients with tuberculosis24 and (B) patients 
with cystic fibrosis infected with Pseudomonas aeruginosa27

(A) Reproduced from Fennelly et al,24 by permission of the American Thoracic Society. (B) Reproduced from 
Wainwright et al.27 Error bars represent 95% CIs. CFU=colony forming units. 
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was collected from room air near 22 (92%) of 24 infected 
infants and young children on a general ward and near all 
ten patients in the intensive care unit; most of the virus was 
contained in particles smaller than 4·7 µm.81 Human 
rhinovirus RNA has been isolated from the air of office 
buildings, but no specific size range was specified.82

Adenovirus was detected by PCR from eight (29%) of 
28 air samples in a paediatric ward in Singapore,83 and 
in 18%84 and 36%85 of air samples from two paediatric 
emergency departments in Taiwan. Adenovirus DNA 

was also detected in 21 (77%) of air samples and in 
78 (72%) of surface samples in five toilets in the 
nephrology ward of an Italian hospital.86 M pneumoniae 
DNA was also detected in 46% of air samples from a 
paediatric outpatient department in Taiwan.84

P jirovecii DNA has been detected in the room air 
in multiple studies. The DNA was first isolated from 
17 (57%) of 30 rooms of patients with Pneumocystis 
pneumonia, but was also detected in six (29%) of 21 other 
hospital rooms.87 A subsequent study found DNA from 

Figure 2: Log-normal distributions of the magnitudes of cough aerosols from patients with influenza using (A) an Andersen cascade impactor31 and (B) a 
NIOSH two-stage aerosol sampler,29 coherent with super-spreading
(A) Reproduced from Bischoff et al,31 by permission of Oxford University Press. (B) Reproduced from Lindsley et al.29 NIOSH=US National Institute of Occupational 
Safety and Health. HID50=50% human infectious dose. 
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air samples taken at 1 m from the head of 15 (79·8%) of 19 
patients, and in four (33·3%) of 12 of samples taken 8 m 
away.88 Nosocomial transmission of Pneumocystis has 
been supported by the finding of air samples positive for 
the DNA in four (29%) of 14 air samples and in two (22%) 
of nine health-care workers exposed during bronch-
oscopy.89 Similarly, air samples were positive for P jirovecii 
DNA in seven (47%) of 15 critical-care unit rooms, and 
nine (8·8%) of 102 health-care workers had colonies.60 
This study was then extended to the detection of DNA 
from rooms of patients with Pneumocystis colonies (but 
without pneumonia).90–92

Few aerosol data were available from the SARS-CoV 
pandemic in 2003. In Toronto, air sampling with a slit 

sampler yielded two of ten samples that were positive for 
SARS-CoV by PCR but negative on viral culture. Both PCR 
and cultures were negative on 28 filter samples.93 Retro-
spective analyses strongly suggested that airborne trans-
mission probably occurred in Hong Kong.94–96 The Middle 
East Respiratory Syndrome (MERS) coronavirus was iso-
lated from seven room air samples from dedicated MERS 
units in two South Korean hospitals. All seven were positive 
by PCR and four of seven were positive on viral culture.97

Infectious aerosols of SARS CoV-2
Since the outbreak of COVID-19, there has been a question 
over airborne transmission of SARS-CoV-2. Similar to that 
seen with SARS-CoV, there was only a mild reduction in 
viability over a 3-h period in an experimental aerosol 
generated in a laboratory, consistent with a potential for 
airborne spread.98 To date, there are no published reports 
of cough aerosol or exhaled breath sampling from patients 
with COVID-19, but SARS-CoV-2 has been detected in the 
air of hospitals in China99 and the USA.100 The virus was 
detected in both surface and air samples in another 
hospital in Wuhan, China, with positive PCR tests on 
14 (35%) of 40 air samples from the intensive care unit 
and two (12·5%) of 16 air samples from the general ward.101 
It appears that SARS-CoV-2 has the potential to be spread 
by all modes of transmission: direct contact (ie, person-to-
person) and indirect contact (eg, via contaminated objects 
and aerosol).100 It is not yet clear which mode occurs most 
frequently. Air sampling for SARS-CoV-2 was negative in 
three studies,102–104 but two included small numbers of 
patients in rooms with high rates of dilution ventilation,102,103 
and one study included a small number of air samples 

Pathogen, n/N (%) 
patients

Containment 
method and 
sampling time

Aerosol sampling method Particle size range (µm; % of 
total aerosol)

Median CFU or viral copies 
(range)

Comment

Sydney, NSW, Australia 
(Gralton et al, 2013)32

Mixed viruses 31/52 
(60%) 

Custom unit 
10 min

Andersen cascade impactor <4·7; 25/31 (81%)  Not measured HRV, RSV, influenza A, 
and parainfluenza

Hong Kong, China 
(Fabian et al, 2008)44

Influenza A, 3/5 (60%); 
Influenza B, 1/7 (14%) 

Oronasal face 
mask 20 min

Teflon filters and optical 
particle counter

<1; >87% (<3·2 to 20 viral particles)

Lowell, MA, USA 
(Milton et al, 2013)45

34/37 (92%); 
20 influenza A; 
17 influenza B

Head inside 
cone-shaped 
collector 30 min

Gesundheit-II: sit impactor 
for coarse fraction; water 
condenser plus slit impactor 
for fine fraction

≤5 (fine fraction): 34/37 (92%) 
>5 (coarse fraction): 
16/37 (43%) 

Maximum viral copies:
Fine: 1·3 × 10⁵
Coarse: 2·9 × 10⁴

Fine particles contained 
8·8 times more virus 
than coarse particles

College Park, MD, USA 
(Yan et al, 2018)46

52/134 (39%) culture 
positive in fine 
aerosols; 
coarse aerosols not 
cultured 

Head inside 
cone-shaped 
collector 30 min

Gesundheit-II: slit impactor 
for coarse fraction; water 
condenser plus slit impactor 
for fine fraction

≤5 (fine fraction): 
166/218 (76%) PCR-positive
>5 (coarse fraction): 
88/218 (40%) PCR-positive

≤5 (fine fraction): 3·8 × 10⁴ 
geometric mean RNA copies
>5 (coarse fraction): 1·2 × 10⁴ 
geometric mean RNA copies

Hong Kong (Leung 
et al, 2020)47

Mixed viruses 
49/132 (37%)

Head inside 
cone-shaped 
collector 30 min

Gesundheit-II: slit impactor 
for coarse fraction; water 
condenser plus slit impactor 
for fine fraction

≤5 (fine fraction): 
4/10 (40%) coronavirus, 
19/34 (56%) rhinovirus
>5 (coarse fraction): 
3/10 (30%) coronavirus, 
6/23 (26%) influenza, 
9/32 (28%) rhinovirus 

Median log10 copies; ≤5 (fine 
fraction):  coronavirus 0·3, 
influenza 0·3, rhinovirus 1·8
>5 (coarse fraction): 
coronavirus 0·3, 
influenza 0·3, rhinovirus 0·3

CFU=colony-forming units. HRV=human rhinovirus. RSV=respiratory syncytial virus. 

Table 2: Summary of studies of infectious aerosols collected from exhaled breath with particle size data

Figure 3: Proportions of influenza aerosol particles sizes in cough29 and 
exhaled breath44 sample collections
Data extracted from primary references29,44 for comparison. Influenza virus in 
exhaled breath is emitted in smaller particles than influenza virus in cough 
aerosols. 
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using inefficient impinger devices.104 The outbreaks of 
COVID-19 in nursing homes,105 choirs,106 and correctional 
facilities107 are reminiscent of tubercu losis outbreaks and 
suggestive of both traditional airborne transmission and 
so-called super-spreading epidemiology.42,43,108 Experiments 
using the golden hamster model have shown 100% effic-
ient aerosol transmission among animals caged separately 
as well as by direct contact.109

A new paradigm of infectious aerosols
These data show that infectious aerosols from humans 
exist in a wide range of particle sizes that are strikingly 
consistent across studies, methods, and pathogens. There 
is no evidence to support the concept that most respiratory 
infections are associated with primarily large droplet 
transmission. In fact, small particle aerosols are the rule, 
rather than the exception, contrary to current guidelines.12 
These small particles occur without a need for a prolonged 
time to allow for desiccation, and they are of a size that is 
immediately respirable. These data also add evidence that 
could update the current dichotomous infection control 
guidelines, as was proposed 9 years ago.110

The logic that transmission within close proximity 
defines respiratory droplet spread is fallacious, as small 
particle aerosols are in the highest concentration close to 
patients and dissipate with distance. There is epidemio-
logical evidence of an increased risk of tuberculosis 
transmission within close proximity.111–113 Individuals 
sharing a bed with a source patient with tuberculosis are 
more likely to be infected than people sharing the same 
room; in turn, people sharing the same room as the 
source case have a higher risk than individuals in a 
different room.114–116 An outbreak associated with an 
aerosol-generating device used to clean a tuberculous 
abscess revealed a gradient of tuberculin reactivity, with 
higher rates among patients in rooms closest to the source 
case’s room.117 Physical distancing decreases transmission 
potential from pathogens in small particles as well as in 
large particles, although small particles have a greater 
capacity to travel further.

The variability of transmission among respiratory 
pathogens appears to be less dependent on the physical 
particle size emitted by the diseased person, as current 
guidelines suggest, but more by biological factors such 
as the size of the emitted inoculum, the ability of the 
pathogen to survive desiccation and other stresses of 
aerosolisation and airborne transport, and environmental 
factors such as air movement, temperature and humidity, 
and host defences.

Implications of infectious aerosol data for 
infection control practice
Because of the large number of patients in health-care 
settings, health-care workers are likely to have frequent 
exposures to highly infectious cases. They might also have 
more cumulative inhaled doses and infections, although 
it is unknown if this is involved in the pathogenesis 

of COVID-19. Infection control measures might not 
only reduce the probability of infection, but might also 
reduce the size of the inhaled inocu lum, which has been 
associated with disease severity in influenza118,119 and other 
diseases.120 This might be especially important for small 
particle aerosols, as 1 µm aerosols of Bacillus anthracis 
caused higher mortality in animals than 12 µm aerosols in 
a seminal study.121

Masks versus respirators
Modelling studies122–124 and simulated workplace protection 
studies125–127 in the USA have shown benefits of various 
types of respirators and little to no protection from surgical 
masks. A study in the UK found that surgical masks could 
reduce inert aerosol exposure by two times, but filtering 
facepiece respirators reduced the exposure by a factor of 
100 or higher.128 In a study of influenza aerosols, surgical 
masks reduced exposure by an average of six times, but 
there was a wide range of reduction from 1·1 to 55 times, 
depending on the design of the mask.129 Two randomised 
trials130,131 did not show any benefit of N95 respirators over 
surgical masks in reducing respiratory illnesses, and two 
showed that the respirators were protective.132,133 However, 
none of the trials used quantitative fit testing, and two had 
surprisingly low failure rates (1·1–2·6%)132,133 compared 
with 60% found in a panel study for the same N95 
respirators.134 The low failure rates suggest a problem with 
fit testing.

Filtering facepiece respirators are only as effective as 
their fit, as the weak point of these respirators is the 
face-mask leak.135,136 Unfortunately, there has been little 
operational research on the process of fit-testing respir-
ators for health-care workers. There is wide variability 
among filtering facepiece respirators, and “it may be of 
more benefit…to wear a respirator model with good-fitting 
characteristics without fit testing than to wear a respirator 
model with poor-fitting characteristics after passing a fit-
test.”134 Similarly, there are some surgical masks that offer 
good protection, but as they are not certified or regulated 
as devices for respiratory protection, it is difficult to know 
which is the best to use. There is a pressing need for 
research in this area. Face shields can decrease inhalation 
exposures to wearers and surface contamination of 
filtering facepiece respirators by aerosol particles of a 
median diameter of 8·5 µm by 96% and 97%, respectively, 
but they only reduce inhalation exposures to smaller 
particle aerosols of 3·4 µm by 23%.137

Masks to prevent transmission from the wearer
Although surgical masks offer little protection from 
inhaled agents, they have a role in protecting health-
care workers when worn by patients. Placing surgical 
masks on patients with multidrug-resistant tuberculosis 
decreased transmission to guinea pigs by 56%,138 and 
masking of patients with cystic fibrosis reduced 
P aeruginosa air contamination by 8%.139 Surgical masks 
reduced the quantity of influenza viral RNA by 2·8 times 
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in small particles and by 25 times in large ones.45 More 
recently, surgical masks effectively reduced large droplets 
(>5 µm) of seasonal coronaviruses from three of ten 
patients to 0 of 11 (p=0·09) and small aerosols (<5 µm) 
from four of ten patients to 0 of 11 (p=0·04).47 Similarly, 
surgical masks reduced droplets of influenza from six of 
23 to one of 27 (p=0·04). However, the reduction in 
influenza small aerosols (<5 µm) was not significant. 
There is mounting evidence suggesting that the wearing 
of masks can reduce transmission of SARS-CoV-2 in 
community and health-care settings.140

A major limitation to much of the data on infectious 
aerosols of viruses is the reliance on PCR findings; few 
studies have evaluated viability using cell cultures or 
other methods. Viability itself can be difficult to assess. 
Aerosolisation from the respiratory tract produces 
multiple stresses on microbes that can decrease their 
viability, usually defined by the ability to be cultured. 
Indoors, desiccation predominates, but temperature, 
radiation, oxygen, ozone and its reaction products, and 
other exposures can also damage viral lipids, proteins, 
and nucleic acids.141 Aerosol sampling itself can produce 
additional stresses, including mechanical trauma, add-
itional desiccation, and injury in post-sampling pro cesses 
and extraction.142 PCR assays are usually easier to do 
logistically than using cell cultures for viral sampling. For 
example, our group was able to directly sample influenza 
virus onto monolayers of cell cultures in the laboratory, 
but this proved impractical for transport to and from 
clinical sites because of the sensitivity of the cells to 
spillage and pH stresses.143 These multiple factors, as well 
as inherent physical inefficiencies of air samplers, 
suggest that most infectious aerosol data are probably 
underestimates of the exposures to health-care workers.

Obviously, infectious individuals breathe continuously 
24 h per day, but there are no data on possible circadian 
rhythms or variability in output. By contrast, coughing 
can be very paroxysmal and sporadic. Although 24-h 
cough frequency can be measured, it has not been linked 
to aerosol production. There is only one study of the 
association between cough aerosol production by 
tuberculosis index cases and new infections in exposed 
contacts;34 however, no studies have documented trans-
mission of any respiratory infections exclusively via 
large respiratory droplets or fomites. Although the data 
reviewed here indicate that there are small proportions 
of patients who are highly infectious and probably super-
spreaders,42,43 until a diagnostic test or other method is 
available to identify them, we must consider all patients 
with respiratory pathogens as potentially infectious.

Discussion
This Viewpoint suggests that infection control guidelines 
should be re-evaluated to account for the predominance of 
small particles within infectious aerosols. Protective devices 
available to health-care workers have a range of protection, 
increasing from surgical masks to filtering facepiece 

respirators to powered air-purifying respirators. Although 
these are indicated for close encounters, their limitations 
highlight the need for improved admini strative controls, 
such as more rapid diagnosis and isolation, and the 
development of vaccines and treatments. These data 
support calls for the recognition of aerosol (ie, traditional 
airborne) transmission of SARS-CoV-2.144 This could 
facilitate the use of enhanced dilution and directional 
ventilation and other environ mental control options—eg, 
air disinfection with ultraviolet germicidal irradiation,145 
which might be especially helpful in congregate settings 
such as nursing homes. Implementation of improved 
infection control measures could prevent future morbidity 
and mortality among health-care workers.
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